Leichtathletik im Wandel

Verfasser : G.Sonnemann , Sportanalyst , Berlin , Dez. 2013

IV. Leichtathletik in Bewegung

B. Berechnung von Teilhöhen im Hochsprung

Im Folgenden wird die Version 2013 durch die Version 2014 ersetzt,;geändert im Dezember 2016

                        ( Auszüge aus der Vollversion 2014 )

 

Aus Anlaufgeschwindigkeit und Kraftpotential ganz einfach die Sprunghöhe ermitteln !

Haben Sie Interesse an der Vollversion des Themas, wenden Sie sich bitte unter Kontakt an den Verfasser .

 

 

Die Vollversion bietet Ihnen :

 

        -  die Darstellung der Beziehungen aller Leistungsparameter

           zueinander

           und die formelmässige Berechnung einer Sprunghöhe

 

        -  den kompletten Höhenrechner

 

        -  div. voreingestellte Leistungsparameterkombinationen mit

            dazu gehörigen Einzel - Teilhöhen

 

        -  div.  graphische Skizzen zum Verständnis   

 

 

Wie sich bei einem Fosbury- Flop-Sprung die Absprunggeschwindigkeiten in den einzelnen Sprungphasen entwickeln , zeigt die graphische Darstellung in der folgenden pdf - Datei :

 

 

Scan10003.jpg
JPG-Datei [657.3 KB]

Der Sprung in Worten :

 

Ein 1,91 m großer Springer läuft mit einer horizontalen Anlaufgeschwindigkeit von 8,1 m/s an.

Bei einem Rücklagewinkel von 31 Grad ( entspricht etwa 47 grad Absprungwinkel )  entsteht beim aufsetzen des Sprungbeines ein Bremsstoß von 4,0 m/s .

Von der restlichen horizontalen Anlauf-V nimmt der Springer 3,3 m/s als Geschwindigkeit in Richtung der Flugbahn des Körperschwerpunktes mit .

Dazu kommt die aus dem reinen Absprung generierte Geschwindigkeit von 3,15 m/s , mit rein vertikalem Anteil und zusätzlichem horizontalem Anteil.

 

Der Einsatz der Schwungelemente erhöht zwar den Körperschwerpunkt bei Absprungende , ist jedoch für die Steigehöhe beim Flop nicht wirksam. Die zusätzlichen Geschwindigkeiten aus Schwungbein und Armen werden zur Realisation der erforderlichen Körperdrehungen benötigt.

 

 

 

 

A. Aufstellung der Berechnungen

 

 

Die Leistung eines Hochspringers setzt sich nach dem Teilhöhenmodell wie folgt zusammen :

 

                             H = h1  +  h2  -  h3

                                                                                                                                                                                           

 

mit :                            h   =  Körperschwerpunktshöhe bei Absprungende

                                   h2   =   Steigehöhe des KSP von Absprungende bis zur max.Höhe

                                              der  Flugkurve

                                   h3  =   Lattenüberhöhung

 

 

Die Leistung eines Athleten hängt von vielen Parametern ab.

 

 

Da wären hauptsächlich :

 

  •  horizontale Anlaufgeschwindigkeit
  •  Rücklagewinkel bei Beginn des Absprungs
  • Absprungwinkel
  • vertikale Absprunggeschwindigkeit
  • Absprungzeit
  • Einsatz der Schwungelemente

 

und natürlich die Sprungkraft eines Athleten.

 

 

Wie die einzelnen Faktoren miteinander wirken, ist in der gegenseitigen Abhängigkeit schon mehrfach beschrieben worden .

 

Messbare Ergebnisse der Wechselwirkungen gibt es nicht in jedem Falle.

 

 

Die Zurückführung der Einflussgrößen auf allgemeine mathematisch / physikalische Zusammenhänge soll hier zu einigen konkreten Aussagen führen.

 

Es wird vorausgesetzt, dass der Athlet die angewendete Technik gut beherrscht.

 

Mit den Daten des Berechnungsmodells wird also erkennbar sein, wie zum Beispiel die Änderung der Anlaufgeschwindigkeit sich in cm auf die Hochsprungleistung auswirkt und welchen bezifferbaren Einfluss der Absprungwinkel hat.

 

 

In Weiterentwicklung des Themas in der Fassung  von 2013 wird hier in allen Punkten berücksichtigt, dass alle Bewegungen eines Hochspringers sich im Raum abspielen, also dreidimensional sind.

 

 

Einige Athletenleistungen mit unterschiedlichen Leistungsparametern sind nach Berechnungsmodell im Höhenrechner in der

 

 

                                       pdf –Datei

 

Berechnung von Hochsprungleistungen nach[...]
Microsoft Excel-Dokument [13.4 KB]

dargestellt.

 

 

Die Ergebnisse werden in ihrer Aussage nicht dadurch geschmälert, dass die einzelnen Aussagewerte in der Praxis durchaus größere Abweichungen von den verwendeten Mittelwerten des Musterathleten haben.

 

Zum Verständnis der rechnerischen Ermittlung der Einzelwerte einer Hochsprungleistung sind zahlreiche graphische Darstellungen gefertigt, die in Auszügen in der folgenden Datei gezeigt werden.

 

Hoch, 2014 , Skizzen,pdf.pdf
PDF-Dokument [1.8 MB]

 

 

1.)  zur Körperschwerpunktshöhe  h 1

 

 

Die Körperschwerpunktshöhe  h1  setzt sich aus der Höhe des Körperschwerpunktes zu Absprungbeginn = KSP,A  und der Hubhöhe s  ( in 2.2 berechnet )  zusammen.

 

 

1.1 die Körperschwerpunkthöhe KSP,A zu Absprungbeginn

 

 

Die gesamte Absprungsituation ist für 3 verschiedene Rücklagewinkel im Maßstab 1: 10 in den Skizzen der zuvor aufgeführten pdf-Datei dargestellt.

( B.2 – B.4 )

 

Aus den Skizzen lassen sich die verschiedenen Körperschwerpunktshöhen und Beschleunigungswege ablesen. Sie sollten auf jeden Fall studiert werden.

 

Es ist erkennbar, dass die Höhe des Körperschwerpunktes zu Absprungbeginn zu allererst  mit dem Rücklagewinkel  δ  des Springers in Zusammenhang steht, und natürlich auch von der individuellen Größe eines Springers abhängt.

 

Die bei allen folgenden Berechnungen geltenden Körpermaße des Musterspringers sind in der Anlage B.1  genannt.

 

 

 

1.1.1 Zum Einfluss des Rücklagewinkels :

 

 

Je größer der Rücklagewinkel  δ  ist, umso geringer ist die Körperschwerpunktshöhe des Springers zu Absprungbeginn.( bei gleicher Körpergröße )

 

Die Skizzen B.5.1  und  B.5.2  erläutern die geometrischen Zusammenhänge für zwei Athleten mit verschiedenen Rücklagewinkeln

 

Der Kniewinkel λ  des Absprungbeines ist im Mittel beim Flop = 172 grad  und beim Straddle

 = 140 grad – 150 grad.

              

 

Die Körperschwerpunktshöhe zu Absprungbeginn = KSP,A für den Musterathleten ergibt sich gemäß den Skizzen <<<< B.5.1  und    B.5.2 der pdf-Datei.          

 

 

Die individuelle Körpergröße eines jeden Springers soll hier noch eingearbeitet werden.

 

1.1.2 Zur Körpergröße der Springer :

 

 

Der Körperschwerpunkt eines Springers ist von Anfang an natürlich umso höher, je größer der Springer ist.

( Berechnung für Springer im Stand unter B.6 )

 

Dabei wird die Änderung der Körpergröße zur Hälfte in die Berechnung der Höhe des Körperschwerpunktes zu Absprungbeginn eingerechnet.

 

Dann wird :

 

 

KSP,A =           Formel nur in Vollversion des Berechnungsschemas enthalten              

 

                        mit GSP     =  Größe des Springers

 

 

 

     1.2 Hubhöhe

 

 

 

Unter  Hubhöhe = s  wird verstanden :  Körperschwerpunkthöhe zu Absprungende = KSP,E  –   KSP-Höhe zu Beginn des Absprunges

 

 

Die Hubhöhe ergibt sich aus :

 

  • Aufrichtvorgang beim Absprung
  • Bein-/Fußstreckung Sprungbein
  • KSP-Erhöhung durch Einsatz der Schwungelemente

                                                                                        

 

Bestimmung für den Musterathleten :

 

 

Aus den Skizzen und den konkreten Körperschwerpunktsberechnungen in der pdf-Datei können die tatsächlich erzielbaren Einzelhöhen

 

KSP,A  und  KSP,E abgelesen werden.

 

Es sind dies :

 

Rücklagewinkel  δ               KSP,E             KSP,A                       Hubhöhe in m

 

   31 0                                  1,324              0,972                        0, 352

 

   37,7 0                                               1,364              0,886                        0,478

 

   39 0                                                   1,358              0,85                          0,508

 

 

Unter Berücksichtigung der Körpergröße und des Kraftfaktors KF eines Springers ( auf den später noch eingegangen wird ) deckt folgende Formel  diesen Zusammenhang ab:

 

 

 

S =                  Formel nur in Vollversion enthalten                  

                                                 

 

 

 

 

1.3  wie groß ist die Wirkung der Schwungelemente auf die Höhe des KSP ?

 

Aus den Skizzen B.2  bis  B.4 zur Absprungsituation kann auch die körperschwerpunktsteigernde Wirkung der Schwungelemnte in etwa berechnet werden.

 

Sie ist Teil der erreichten Hubhöhe.

 

 

gestrecktes Schwungbein :

 

      Hier wird die Skizze B.4.1 für den Rücklagewinkel δ = 39 0 angewendet.    

 

      Die Erhöhung des Körperschwerpunktes bei Absprungende durch Einsatz der

      Schwungelemente ist von der Masse des Schwungelementes ( hier in Prozent vom

      Gesamtgewicht des Springers angegeben ) und der Veränderung der

      Höhe des Teilschwerpunktes abhängig.

     ( Differenz Höhe Absprungende zu Teilschwerpunktshöhe im Stand )

 

 

Oberschenkel Schwungbein = 0,14*(1,31m-0,93m)     =                5,3    

Unterschenkel Schwungbein = 0,06 * (1,72-0,37)        =                8,1

 

1.Arm ,Oberarm                                    = keine Höhenveränderung

         , Unterarm            = 0,023 * ( 1,54-1,18)          =                 0,8

 

2.Arm, Oberarm              = 0,027 *(1,75 – 1,53 )        =                 0,6

          ,Unterarm             = 0,023 * (1,98 – 1,18  )      =                 1,8 

 

                                                     Summe        =               16,6 cm

 

 

 

 gebeugtes Schwungbein :

 

 

Hier wird die Skizze B.3.1  für den Rücklagewinkel δ = 37,7 grad  angewendet.

 

                                                     Summe       =                 15,5 cm   

 

    

   


 

 

Fosbury-Flop :

 

Hier wird die Skizze B.2.1 für den Rücklagewinkel δ = 31 0 angewendet.

 

                                                      Summe       =                  11,5 cm       

 

   

2.) zur Steigehöhe  h 2

 

 

Die Steigehöhe h2  eines Hochsprunges lässt sich aus der Formel des schrägen Wurfes berechnen:

 

 

 

 

                        h2  =   V AB,y2                V AB,res. 2  * sin2α                                          

                                  ---------      =      ---------------------

                                     2 g                             2 g

 

 

                                         mit:    V AB,y     =  vertikale Komponente der

                                                                    V AB

                                                   V AB ,res.  = resultierende Absprung-V in Richtung

                                                                      KSP – Linie

                                                       g        =   Erdbeschleunigung 9,81 m/sec.2

 

                                                       α        =  Absprungwinkel

 

 

 

2.1 wie berechnet sich die resultierende Absprunggeschwindigkeit  VAB,res. ?

 

 

Die Absprunggeschwindigkeit VAB,res.  ist ein Vektor, gekennzeichnet durch Betrag und Richtung.

Ihre Höhe ergibt aus den Einzelgeschwindigkeiten und der Richtung mehrerer Teilimpulse, die der Körper des Athleten erzeugt.

 

 

Es sollen 3 Teilimpulse zur Bestimmung der Absprunggeschwindigkeit VAB,res. herangezogen werden, so dass :

 

 

               VAB,res. =  VAB,1  +  VAB,2  +  VAB,3

 

                                ( vektoriell )

 

 

Es sind hier :      V AB,1  =   die Anfangsabsprunggeschwindigkeit unter

                                         dem Winkel α

                                         entstehend aus dem Impuls der nach dem

                                         Bremsstoß

                                        verbleibenden horizontalen

                                        Anlaufgeschwindigkeit V Anl.,Rest.

 

                          V AB,2  =   die Teilabsprunggeschwindigkeit

                                         entstehend aus dem     

                                         reinen Absprung

 

                          V AB,3  =   die aus dem Einsatz der Schwungelemente

                                         resultierende

                                        Teilabsprunggeschwindigkeit

 

 

 

Alle diese Geschwindigkeiten werden in Richtung ihrer Entstehung berechnet.

 

Diese Wirkungsrichtung ist aber nicht unbedingt gleich der Richtung  der Fluglinie des Körperschwerpunktes.( = VAB,res. )

 

 

Sie werden in den Punkten  2.5.)  - 2.7.) ermittelt.

 

Zum Abflugwinkel  alpha muß man noch sagen, dass er eine rein rechnerische Größe ist.

Er lässt sich nicht messen, sondern ergibt sich aus der resultierenden Geschwindigkeit, die aus der vertikalen V unter dem Abdruckwinkel  und der horiziontalen V zusammen wird.

Der Abdruckwinkel ist dabei der Winkel zwischen der Vertikalen und der Linie durch den Fuß

des Springers und dessen KSP  bei Absprungende.

Dies gilt für alle Sprungarten...

 

Durch die Aufteilung der Absprunggeschwindigkeit in  3  Einzelgeschwindigkeiten lässt sich  die Wirksamkeit der Einflussfaktoren auf die Errechnung der Steigehöhe  h darstellen.

 

Für den Musterathleten  mit :

 

                                                  VAnl.,horz = 8,1 m/s

                                                  Absprungwinkel α = 47 0

                                                  Größe = 1,91 m

                                                  Anlaufwinkel = 300

                                                  Kraftfaktor = 1

 

 

ergeben sich nach dieser Formel folgende Teilgeschwindigkeiten und Teilhöhen der Hochsprungleistung :

 

 

 

   h 1        +                    h2 nach Berechnung       +       h 3                  =        H

 

 0,983 m  + 0,352   +   1,13                              - 0,07 m       =   2,395 m

 

  55,755  %                47,17 %                             2,92 %       =     100 %

 

 

                                                        

Musterathlet :   

              VAB,1                             VAB,2                        VAB,3

   =           3,35 m/s              3,21 m/s                     0

 

 

                            VAnl.,Rest                =        3,76  m/s

                                                                                           

                            Bremsstoß       =        3,99 m/s

 

                            Rücklage δ       =          31 0

 

                            Hubhöhe s        =                                   0,352

 

                            Absprungzeit t  =                                    0,1498

 

                            Kraftfaktor  KF   =                                     1           

                

Es gilt :

 

  1. Alle diese Geschwindigkeiten liegen in einer Ebene mit dem Absprungwinkel α  zur Horizontalebene.

    Die resultierende VAB,res- kann damit mit dem Cosinussatz ermittelt werden.

 

                                                 siehe Darstellung in   <<<<<<<<<<<<<  B.7

                          

  1. VAB,1rest ist aus der Berechnung nach Abzug des Bremsstoßes von der Anlauf-V bekannt. Der unter dem Absprungwinkel α wirkende Teil somit auch.

    Ebenso bekannt ist der Winkel zwischen Latte und

    Anlaufrichtung des Springers

    = Anlaufwinkel

 

  1. Die reine Absprung – V AB,2 wird aus dem Hubweg  s  und der Absprungzeit  t  errechnet.

 

 

 Die Ermittlung der Einzelwerte lässt sich mit der Vollversion des bereits erwähnten

 

                                      Höhenrechner                   

 

auf der pdf-Datei  durchführen.

 

 

Die resultierende Absprungs-VAB,res.  zur Berechnung der Steigehöhe errechnet sich  nach Bild B.7  mit dem Cosinussatz.

 

 

VAB,res.  ergibt sich danach aus :

 

     VAB,res.  =  Formel nur in Vollversion enthalten

 

 

 

2.3 wie groß sind die Anteile von VAB,1  und  VAB,2  an der VAB,res. ?

 

 

Bei der Addition mehrerer Vektoren hängen die Anteile eines Vektors ( hier  VAB ) am resultierenden Vektor von ihrer Größe und den Winkeln ihrer Wirkung untereinander ab.

 

Deshalb müssen als nächstes die Winkel der Vektoren in dieser Wirkungsebene bestimmt werden.

 

Nach Bild  B.7 in Anlage  sind in diesem schiefwinkligen Dreieck  alle Seiten bekannt.

Daraus lassen sich ( für den Musterathleten) die Winkel wie folgt berechnen :

 

 

 

Der Anteil von VAB,1  an VAB,res. ist demnach = nur in Vollversion entahalten 

 

Und der Anteil von VAB,2 an VAB,res. = nur in Vollversion enthalten 

 

Aus diesen Werten können dann auch die höhenmäßigen Auswirkungen berechnet werden.

 

 

 

2.4  Übergang vom Anlauf zum Absprung

 

Beim Flop ist mit dem vorletzten Schritt der Aufrichtvorgang aus der Innenlage des Kurvenlaufes abgeschlossen.

Der Springer hat zu Beginn des Absprungs etwa einen Winkel von 20-30 zur Senkrechten, von der Sprunglatte weg.

Zu Absprungende ändert sich dieser Winkel in eine Neigung zur Latte hin, unterschiedlicher Größe , i.M. hier genommen mit 50 zur Latte hin.

 

Ändert sich die horizontale Anlaufgeschwindigkeit des Athleten dadurch ?

 

 

VAB,1,s   =  ( VAB,1,A * sin870 ) / sin 900

 

VAB,1,E       =  VAB,1,s * sin 850 )/ sin 900 = ( VAB,1,A * sin 870 * sin 850 ) /(sin 900) 2

 

VAB,1,E = VAB,1,A * 0,9948      

 

 

Diese geringe Änderung wird bei den folgenden Berechnungen vernachlässigt.

 

 

 

 

2.5  Ermittlung von  VAB,1

 

 

V AB,1 liegt zu Beginn des Absprungs vor, und ergibt sich aus dem Impuls der horizontalen Anlaufgeschwindigkeit, reduziert um den Bremsstoß mit Aufsatz des Sprungbeines.

 

            V Anl.,Rest   =   V,Anlauf   -   Bremsstoß    .                                                                         

 

                                               siehe dazu die erklärende Skizze  in   <<<<<<<< B.9

 

Von der horizontalen Anlaufgeschwindigkeit des Musterathleten werden hier  pauschal

0,34 m/ s  abgezogen , und zwar :

 

  • als Verlust an Geschwindigkeit vom vorletzten  auf den letzten Schritt infolge der Vorbereitung auf den Absprung [ 1; S.209 ]

 

 

 

 

2.5.1  zunächst muss also der Bremsstoß ermittelt werden

 

 

Die Größe des Bremsstoßes ist abhängig von der Rücklage, die der Springer bei Beginn des Absprunges einnimmt.

 

Der Rücklagewinkel wird hier δ ( delta ) genannt und ist die Abweichung der Körperachse von der Vertikalen.

 

Wird der Rücklagewinkel größer, vergrößert sich der Bremsstoß, wobei die Beziehung besteht, dass mit größerem Rücklagewinkel  δ  auch der Absprungwinkel α größer wird.

 

 

Die Abhängigkeit von  δ zum Absprungwinkel  α  lässt sich aus folgenden bekannten Beziehungen ableiten :

 

 

                                                     δ                  α

  

                 Fosbury-Flop               31 0               47 0     nach Killing [ 1 ] 

                 Straddle                     37,5 0            62,5 0          nach

                                                                                     Bauersfeld [ 2 ]

            

 

 

 

und formelmässig darstellen.

 

 

VAB,1  lässt sich nun nach dem Sinussatz wie folgt ermitteln :

 

 

 

                              VAB,1   =  Formel nur in Vollversion

                                            enthalten                                    

                                               

( siehe B.9  in der pdf-Datei )

 

 

 

2.5.2  zur Begrenztheit der Anlaufgeschwindigkeit

 

 

Bei der Berechnung eines individuellen Sprunges stehen die benötigten Ausgangswerte

 

α / VAnl.,horz. / KF / GSP /Anlaufwinkel

 

zur Verfügung und werden in die Formeln eingesetzt.

 

Werden die Berechnungsformeln für theoretische Betrachtungen verwendet, muss auf jeden Fall berücksichtigt werden, dass der Absprungwinkel α  und die horizontale Anlaufgeschwindigkeit VAnl.,horz. in einem engen Zusammenhang stehen.

 

Es ist dem Springer aus physikalischen und physischen Gegebenheiten nicht möglich, die Anlaufgeschwindigkeit bei einem bestimmten Absprungwinkel α  unbegrenzt  zu erhöhen.

 

Je größer der Absprungwinkel,( und damit je größer der Rücklagewinkel δ ) desto geringer die vom Springer in einen Absprung umsetzbare Anlaufgeschwindigkeit.

 

Es hat also keinen Sinn, zum Beispiel einen Wert bei VAnl.,horz. von 8,1 m/s  bei 47 0

 auch bei α = 58 0 einzusetzen, um die Wirkung des höheren α zu sehen. Die 8,1 m/s sind ein max. Wert bei α = 470 und bei einem größeren Absprungwinkel vom Athleten gar nicht zu erreichen.

Wie sich die mögliche VAnl.,horz. mit steigendem Absprungwinkel verändert, sollen folgende vorhandenen Daten zeigen:

 

           δ                  VAnl.,horz.      10 δ = Δ VAnl.,horz.

 

       31 0                                7,95                                                ( Flopsprung )

                                                   0,75/ 6,5 = 0,115

       37,5 0                            7,2                                                  ( Straddle )

 

       90  0                                0           7,2/ 52,5 =  0,137             ( CMJ-Sprung )   

 

 

 

Die äquivalente Anlaufgeschwindigkeit für jeden Absprungwinkel α zur weiteren Berechnung der theoretischen Vergleichsberechnungen wird im Berechnungsschema formelmässig berücksichtigt.

 

 

 

2.6  Ermittlung von  VAB,2  +  VAB,3

 

 

Bestimmend für die unmittelbare Absprunggeschwindigkeit VAB,2+3  sind der

 

  •  Absprungwinkel
  • die Sprungkraft des Athleten, die maßgebend für die Absprungzeit  t  ist.
  • zusätzlich wirkender nutzbarer Impuls durch die Schwungelemente

 

Zur Ermittlung der Geschwindigkeit des unmittelbaren Absprungs VAB,2+3 werden zunächst

die Hubhöhe und die Zeit = t  des Absprungs heran gezogen.

 

Für beides gibt es einigermaßen zuverlässige in der Praxis gemessene Daten, auch

in     [ 1 ]

 

Unter  Hubhöhe = s  wird verstanden :  Körperschwerpunktabflughöhe

                                                           –   KSP-Höhe zu Beginn des Absprunges

 

Sie ist in 1.2  bestimmt worden mit :

 

                                                                                         

S =          Formel nur in Vollversion enthalten

 

 

Da der Hubweg  S  der vertikale Beschleunigungsweg ist, ergibt sich die  VAB,2+3  aus:

       

 

                                                             s

                                   VAB 2+3  =   -----------

                                                          t * sin α

 

 

 

Rechnerisch ist über  s  und  t  die VAB,2  und  VAB,3  erfaßt , da der Zusatzimpuls durch die Schwungelemnte die Absprungzeit und Geschwindigkeit beeinflusst.

 

Die reine Absprung-VAB,2 wird dann durch Abzug eines Teiles der extra berechneten nutzbaren VAB,3 der Schwungelemente ausgewiesen.

( siehe dazu später bei Berechnung der VAB,3 )

 

 

 

 

2.6.1  zur Bestimmung der Absprungzeit  t

 

 

Aus der Literatur sind für Spitzenathleten folgende Daten zu entnehmen :

 

 

 

          Flop         :   α = 47 0                        <<<   t  =  0,14 … 0,17 sec.

          Straddle  :    α  =  60 0 … 65 0    <<<   t   =  0,20   0,3  sec.

 

 

 

Es gilt : Je größer der Rücklagewinkel δ , desto länger die Absprungzeit  t  .

 

Erweitert wird die Berechnungsformel für die Absprungzeit noch um die Wirkung der Sprungkraft des Athleten, über den sogenannten Kraftfaktor KF.

 

 

 

 

2.6.2  zur Sprungkraft eines Athleten

 

 

Die Sprungkraft  eines Athleten ist natürlich Hauptfaktor einer erzielbaren Sprungleistung.

 

Deshalb soll die Sprungkraft auch in die Berechnungsformeln für Hubhöhe  und  Absprungzeit eingehen.

 

Unmittelbar ist die Sprungkraft nicht in den Berechnungsformeln einer Hochsprungleistung enthalten.

 

Als Maßstab der Sprungkraft soll die erzielbare Sprunghöhe in einem Hochstrecksprung genommen werden.

 

 

Hier wird dazu ein Vertikalsprung ohne Ausholbewegung = CMJ = Counter Movement Jump gewählt.

 

Nach Prof.Dr.Th.Stöggl [ 3 ] wird die Geschwindigkeit beim CMJ – Jump bei Weltklasseathleten mit 3,4 m/ s gerechnet.

 

Das gibt nach  m *g * h cmj  = ½ * m * V2   <<<<   h cmj  = V2 / 2g

und somit h cmj  = 0,589 m.

 

 

Eine andere Berechnungsmethode von  hcmj  geht davon aus, dass Weltklasseathleten eine Kraft von  3200 Newton entwickeln können.

 

 

Danach wird aus der Formel für die Beinkraft :

 

 

                                                   h + s

                                      Fb   =  ----------        * m * g

                                                      s

 

 

                                                   Fb * s

und                               h  =      ----------       - s

                                                    m * g

 

wobei  s  hier die Hocktiefe mit 20 cm ist

 

 

 

                                                   3200 * 0,2

                                   hcmj  =    ----------------    - 0,2     = 0,615 m

                                                    80 * 9,81

 

 

 

 

Als Maßstab der Entwicklung der Sprungkraft soll deshalb hier eine Sprunghöhe

 

 

                                              h cmj,muster  =  0,615 m

 

( In der Literatur werden CMJ-Höhen von bis zu 67 cm genannt. )

 

 

genommen werden .

 

Bei der Beurteilung einer individuellen Sprungleistung wird immer die tatsächliche Sprungkraft, gemessen an der erzielten CMJ-Höhe , ins Verhältnis zur „ Musterhöhe “

0,615 m gesetzt.

 

 

                                             KF  =   hcmj /  hcmj,muster                                                                      

 

 

Allgemein gilt dann für Absprungwinkel kleiner 58 0:

 

 

 

   t     =          Formel nur in Vollversion enthalten

 

 

 

Zu berücksichtigen ist dabei, das die durch die Absprungzeit  t  ermittelte  Absprunggeschwindigkeit auch den Anteil enthält, der durch die nutzbare Zusatzgeschwindigkeit durch die Schwungelemente erzielt wird.

 

 

 

 

 2.7  Ermittlung von  VAB,3

 

 

Die Schwungelemente ( = Schwungbein + Arme ) speichern als sich schnell bewegende Körperteile kinetische Energie, die beim Absprung auf den Körper des Springers übertragen wird , und somit die Absprunggeschwindigkeit erhöhen kann.

 

Außerdem erhöhen die Schwungelemente den Körperschwerpunkt bei Absprungende.

 

Speziell beim Fosbury-Flop haben die Schwungelemente auch die Aufgabe, die nötigen Dreh-und Kippbewegungen des Körpers einzuleiten

 

Die dazu benötigte Energie geht natürlich dem Absprung verloren.

 

Erfolgt der Einsatz der Schwungelemente in Richtung der Flugbahn des Körperschwerpunktes, addiert sich der daraus entstehende Teilimpuls voll mit der Geschwindigkeit VAB,3  zur Gesamtabsprunggeschwindigkeit VAB .

 

Dies ist jedoch bei allen Techniken nicht der Fall, was zu berücksichtigen ist.

 

 

Aus den grafischen Abbildungen   B3 + B.4  lassen sich die Wirkung des Einsatzes des Schwungbeines und der Arme ( hier genommen der Doppelarmeinsatz ) in Bezug auf die Erhöhung des Körperschwerpunktes ablesen und in  cm  ausdrücken.

 

Dies ist in  1.3   geschehen.

 

 

Da die Wirkung der Schwungelemente nur in der Zeit des Absprunges vorhanden ist, lässt sich aus

 

allgemein  V= s/(t * sin α )    und hier speziell

 

 

                  VAB.3  =  s Teil Schwungelemente  / ( t * sin α )

 

 

die Zusatzabsprunggeschwindigkeit VAB,3  errechnen.

 

 

Dazu muss jedoch zuerst  die Erhöhung des Körperschwerpunktes ( = Vergrößerung der Hubhöhe ) durch den Einsatz der Schwungelemente formelmäßig mathematisch erfasst werden.

 

Bekannt sind ( nach 1.3 ) folgende Daten :

 

                   δ                         S Schwungel.

 

              31 grad                     11,5 cm

              37,7 grad                  15,5 cm

              39 grad                     16,6 cm

 

Nach grafischer Darstellung B.13 in Anlage deckt folgende Formel ,erweitert um den Kraftfaktor KF ,diesen Zusammenhang gut ab:

 

 

                     S Schwungel.  =   Formel nur in                                                 

                                             Vollversion enthalten

 

( in die Absprungzeit  t  ist  KF  bereits eingerechnet )

 

Somit sind für den Musterathleten die ( theoretisch ) erreichten Zusatz-Absprunggeschwindigkeiten durch die Schwungelemente für KF = 1

 

 

        Flop :          VAB,3  =  0,117 /( 0,1498 * sin 470 )  = 1,068 m/s

 

        α = 62 0      VAb,3 = 0,157/(0,2188 * sin 62 0 )     = 0,813 m/s

 

        α = 65 0      VAB,3 = 0,166/(0,2384*sin 65 0 )       = 0,768 m/s

 

( Absprungwirksam sind sie in dieser Höhe nicht, was später rechnerisch berücksichtigt wird )

 

Bezieht man die VAB,3 auf die Schwungelemente selbst, also mit welcher Geschwindigkeit sich z.B. das Schwungbein bewegt, ist zu berücksichtigen, dass die Schwerpunktlinien des Schwungbeines und der Arme bei ihrer Aufwärtsbewegung keine Gerade, sondern eine Kurve zurücklegen.

 

Mit aus den grafischen Darstellungen B.2 bis B.4 in der Anlage  abgenommenen Werten sind dann etwa

 

     V Schwungbein,Flop     =  1,15 m /0,1498    =  7,68 m/s

 

     V Schwungbein,gebeugt  =  1,3 m / 0,2188     = 5,94 m/s

 

    V Schwungbein,gestreckt  =  1,37 m / 0,2384  =  5,75 m/s

 

    V Arme,Flop               =   1,4/0,1498          = 9,35 m/s.

 

    V Arme Straddle,gestr.SB   =  1,5/0,2384        = 6,29 m/s

 

 

Doch wie bereits festgestellt, bei keiner Hochsprungtechnik geht die Bewegung der Schwungelemente genau in dieselbe Richtung wie der Absprung.

 

Beim Straddle wirkt das Schwungbein in Richtung des Anlaufes, kann geometrisch zur Berechnung der resultierenden VAB also  zu   a   nach Darstellung B.7 addiert werden.

 

Diese seitlichen Abweichungen bringen Abstriche zur wirklich nutzbaren Zusatzgeschwindigkeit VSchwung,nutzbar durch die Schwungelemente und sollen berücksichtigt werden.

 

 

 

Die Berechnung der  VSchwung,,Richtung VAB,3  wird mittels  Sinussatz erfolgen .

 

 

 

Die Situation beschreibt die grafische Darstellung in der Anlage B.11 + B.12

 

 

                               

 

 

Straddle-Technik :

 

                 V Schwung,              α= 62 0    = (0,813*sin 70,2) / sin 90 0   = 0,765   m/s

 

 

 

Mit folgender Aufteilung für α = 62 0 :

 

             Schwungbein = 0,124 m/(0,2188 sec.*sin 620) = 0,642 m/s ,

                                     davon nutzbar = 0,642*( sin70,2/sin90 ) = 0,604 m /s

 

 

             Arme :           =  0,033/( 0,2188*sin 620) = 0,171 m/s ,

                                 davon theoretisch nutzbar = 0,171*(sin70,2/sin 90 ) = 0,161  m/s

 

 

 

Die nutzbare Zusatz-V durch die Schwungbewegung der Arme wird für die Erzeugung der Einleitung Rotation der Wälzbewegung benötigt, somit bleibt als zusätzlich nutzbare Erhöhung der Absprunggeschwindigkeit der Impuls des Schwungbeines , = 0,604 m/s ( bei einem Kraftfaktor von 1 ).

 

 

 

Ein zu starker Einsatz der Schwungelemente führt allerdings auch zu einer verlängerten Absprungzeit.

 

Vergrößert sich diese auf über etwa 0,17 s  geht die Fähigkeit der Muskulatur , im Absprung einen hohen Kraftstoß zu realisieren, verloren ( = verminderte Reaktivkräfte)

 

Dies geht in die Berechnung der Absprungzeit in Abhängigkeit vom Rücklagewinkel und Kraftfaktor  ein.

 

 

2.8  Zusammenhang Abflugwinkel α  u.a.  Werte zum Abstand Fuß/Lattenebene beim   Absprung

( ergänzt am 30.5 2017 )

 

Der Hochsprung beginnt ja nicht mit dem Absprung.

Zur Vorbereitung des Sprunges gehören auch der Anlauf, die Anlaufrichtung zur Latte und auch der Abstand des Sprungfußes von der Lattenebene.

Dieser Abstand zur Latte beim Absprung ist ganz entscheidend zum Gelingen des Sprunges.

Er wird gemessen in Richtung der resultierenden Abfluggeschwindigkeit V,res.

Theoretisches Ziel des Springers sollte es sein, seinen Körperschwerpunkt in maximaler Höhe genau über der Latte zu erreichen.

Der Weg des KSP ist mit dem Absprung festgelegt, und wird bestimmt vom:

 

                 . Abflugwinkel α

                 . der horizontalen Anlaufgeschwindigkeit

                 . der vertikalen Absprunggeschwindigkeit unter dem 

                   Abdruckwinkel

 

Die Flugweite und Flughöhe sind nach dem Absprung nicht mehr zu beeinflussen.

Deshalb muss der Athlet so weit von der Latte entfernt abspringen, dass er seine maximale Höhe genau über der Latte erreicht.

Tut er das nicht, reißt er die Latte beim Hochgehen mit dem Oberkörper oder beim Abtauchen fällt er auf die Latte.

Aus den persönlichen Daten eines Athleten, wie Sprungkraft,erreichte horizontale Geschwindigkeit , resultierende Abfluggeschwindigkeit lassen sich der Abflugwinkel α und daraus folgend die max.Höhe der Flugkurve und die Weite des Abstandes, wo dies max. Höhe erreicht wird , berechnen.

 

Beispiel  1 

 

 

Ein Athlet läuft mit 8,07 m/s an, er springt mit dem ( berechneten )Abflugwinkel  α= 46,9 grad ab.

Nach Berechnungsschema Sonnemann dieser Arbeit kann er das bei einer resultierenden V,res. = 6,43 m/s.

 

Nach den Zusammenhängen der Parabel des „ schiefen Wurfes“ ergibt sich daraus die

    

            max.Höhe =  ( V2 *sin2 α ) /2 g

 

Hier : h,max. = ( 6,43 2 * sin 2 46,9 ) / 19,62   =  1,123 m

 

H,max. entspricht der Steigehöhe nach Berechnungsformel für Hochsprunghöhe.

 

Die Weite, bei der diese Höhe erreicht wird ist nach

 

             tanα = h,max. / Weite,hmax

 

            W,hmax. = 1,123 / tan 46,9  =  1,05 m

 

Der optimale Abstand beim Absprung zur Latte beträgt demnach  1,05 m  , danach sollte der Anlauf genau ausgerichtet sein.

( mit den Werten des angebrachten Beispiels lässt sich 2,40 m hoch springen )

 

 

 

 

Beispiel 2 :

 

Angenommen der Springer läuft langsamer an, wenn er genauso hoch springen will, muss er bei gleicher Sprungkraft seinen Abflugwinkel vergrößern.

Werte also :  V,,horz. = 7,68 m/s

Und nach Berechnungsschema Sonnemann  α = 53 grad  und  Vres. = 5,87 m/s

 

Dann sind :

 

H,max. = ( 5,87 2 * sin 2 53 ) / 2g  =  1,12 m

 

W,hmax  = 1,12 / tan 53  =  0,844 m.

 

In diesem Fall, bei größerem Abflugwinkel ist der Abstand Fuß/Latte also geringer als bei dem kleineren Abflugwinkel des Beispiels 1

 

 

 

Beispiel 3 :

 

Der Athlet läuft langsamer an, springt auch nicht so hoch ( 8 cm weniger ) , hat aber auch einen Abflugwinkel von Bsp. 1 = 46,9 grad.

Werte :

             V,horz. =  7,5 m/s           α = 46,9 grad

              V,res.  =  6,19 m/ s

 

Daraus folgen :

              H,max. = ( 6,19 2 * sin 2 46,9 ) / 19,62  =  1,04 m

              W,hmax. =  1,04 / tan 46,9  =  0,974 m

 

Der Abstand Fuß/Latte sollte also  97,4 cm betragen.

 

 

Deutlich wird der Zusammenhang  Abflugwinkel / horz.Anlaufgeschwindigkeit/ resultierende Abfluggeschwindigkeit

 

 

3. Lattenüberhöhung  h 3

 

 

 

Unter Lattenüberhöhung ist die Differenz von maximaler Höhe des Körperschwerpunktes zur Lattenhöhe gemeint.

 

Diese ist bei den Springern je nach technischer Beherrschung der Sprungvariante sehr unterschiedlich ausgeprägt.

 

im Allgemeinen wird sie mit  7 cm  beim Flop angesetzt.

Meine Berechnungen haben ergeben .

.

Flop-Technik  = 2,4 cm

Sraddle-Technik   = - 1,5 cm

 

bei jeweils optimaler Technikausführung.

 

 

 

 

.

Quellennachweis :

 

[ 1 ]  =  W.Killing ;Training und Bewegungslehre des Hochsprungs ; 1.Auflage ; 2004 ;

                              Sport + Buch Strauss, Köln

 

 

[ 2 ]  =  Bauersfeld/Schröter ; Grundlagen der Leichtathletik; Sportverlag Berlin, 1979

 

[ 3 ]  =  Prof.Dr.Thomas Stöggl ; sportpraktische Aspekte aus physiologischer und

                                                     biomechanischer Sicht ;Universität Salzburg, 2009

 

 

©    Gunther Sonnemann , Sportanalyst , Berlin Dezember 2014

 

 

 

 

 

B. Erkenntnisse aus Berechnungsschema

1.  t  zu  VAB,res.  ( 24.11.2014 )

Aus der Vorgabe konkreter Einzelparameter lssen sich durch das Berechnungsschema Zusammenhänge erkennen.

 

                       

( Ausgang : α = 47 0  und  Vanl.= 8,1 m/s; KF=1 )

                       
                           

 t                    0,15     0,17      0,19     0,21     0,23    0,25     0,27     0,29

 

 

 

 

 

 

 

 

         

VAB,res.       6,433   6,063   5,772   5,537   5,343  5,181   5,043  4,924

 

 

 

 

 

 

 

 

         

VAB,rs. +/-   0,37     0,291    0,235  0,194   0,162   0,138  0,119

 

 

 

 

 

 

 

           
                           
                           
                           

Ergebnis :

   

 

 
                 

                 Einen Zwachs der Absprunggeschwindigkeit erreicht ein Springer

                 am besten durch Verringerung der Absprungzeit